Cínonosné strusky z oblasti vodní nádrže Mariánské Lázně

Tin bearing slags from the water reservoir Mariánské Lázně

VLADIMÍR ŠREIN^{1)*}, BLANKA ŠREINOVÁ²⁾, PETR BOHDÁLEK¹⁾ A PETR BOUŠE³⁾

Česká geologická služba, Geologická 6, 152 00 Praha 5; *e-mail: vladimir.srein@geology.cz
²⁾ Mineralogicko-petrologické oddělení, Národní muzeum, Cirkusová 1740, 193 00 Praha 9 - Horní Počernice
³⁾ Domaslav 6, 349 53 Lestkov - Domaslav

ŠREIN V., ŠREINOVÁ B., BOHDÁLEK P., BOUŠE P. (2016) Cínonosné strusky z oblasti vodní nádrže Mariánské Lázně. Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 24, 2, 217-223. ISSN: 1211-0329.

Abstrakt

Tin-rich slags were found during the construction of the dam Marienbad. They are composed of Sn-glass, sceletal crystals of ilmenite and small drops of tin metal. Slags also contain grains of Cr-spinel, chromite, and corundum - typical minerals of basic rocks (serpentinite). In the slags is from 14 wt. % to 32 wt. % SnO₂. Tin-rich slags to be residue after compaction cradling tin ore, they formed before the year 1500.

Keywords: Tin bearing slags, Sn-glass, ilmenite, Cr-spinel, chromite, corundum, water reservoir Mariánské Lázně Obdrženo: 15.10. 2016; přijato: 2. 12. 2016

Úvod

Při budování základů nejstarší přehrady západních Čech (přehrada je vysoká 20 m a její zděná kamenná hráz byla vystavěna v roce 1896) byly na Kamenném potoce (nyní Úšovickém potoce) v nadmořské výšce 740 m n. m. v hloubce 8 m nalezeny kusy strusky a zbytky dřevěného rýžovacího nářadí (Beck 1917; Kratochvíl 1961). Práce Becka (1917) se v souvislosti s nálezem strusky navíc zabývá i výskytem výchozích greisenových hornin s kasiteritem ve dvou údolích - Katzengräben (nyní Třebízský potok podél silnice na Kladskou) a Weissegräben (nyní Úšovický - Kamenný potok podél silnice na Prame-

Obr. 1 Zeměpisná mapa okolí vodní nádrže Mariánské Lázně. Upraveno podle https://mapy.cz.

ny). Stopy po rýžování užitkových minerálů jsou dodnes patrné proti toku Úšovického potoka.

Archeologické nálezy, které původně (před rokem 1916) získala významná sběratelka minerálů paní Julie Schildbachová z Mariánských Lázní, se později staly majetkem Městského muzea v Mariánských Lázních. V rámci studia strusek různých stáří i různých technologických procesů byl prohlédnut celý soubor nálezového materiálu a následně byly vybrány k podrobnějšímu výzkumu 3 vzorky šedočerné strusky a 1 vzorek světlé strusky s fragmentem původní horniny (greisenu).

Topografie a geologie oblasti

Vodní nádrž Mariánské Lázně se nalézá v Maxově údolí na Úšovickém potoce cca 2 km s. od Mariánských Lázní na j. hranici CHKO Slavkovský les (obr. 1). Je součástí vodohospodářské soustavy Podhora - Mariánské Lázně a je hlavní zásobárnou pitné vody pro Mariánské Lázně. Geologická stavba okolí je velmi pestrá (obr. 2). Jsou zde zastoupeny jednak horniny Mariánsko-lázeňského metabazitového komplexu a jednak krystalinického komplexu svorových hornin a dvojslídných svorů s granátem. Tyto starší horniny jsou proniknuty magmatickým komplexem granitů, granodioritů a dioritů. Vlivem granitových hornin je část krystalinického komplexu přeměněna na rohovce. Lokálně jsou některé typy granitu greisenizovány, přičemž na greiseny jsou vázány výskyty kasiteritu. K bazickým horninám patří eklogity, serpentinity a amfibolity, místy jsou bazika pronikána žilným křemenem a granitovým porfyrem. Peneplenizovaný povrch žul je lokálně u vodotečí kryt rašelinami a přechází do písčito-hlinitého sedimentu, který je v údolích potoků a vodotečí obohacen o ilmenit, kasiterit a další těžké minerály. V některých místech nad vodotečí jsou vyvinuté i terasy.

Obr. 2 Geologická mapa okolí vodní nádrže Mariánské Lázně. Upraveno podle http://www.geologicke-mapy.cz.

Metodika

Strusky byly studovány makroskopicky a následně mikroskopicky v nábrusech. Z části vzorků byly natřeny práškové preparáty na stanovení chemického složení metodou RFA (rentgen-fluorescenční analýza) pomocí analyzátoru XR 200 (LINK ANALYTICAL, Velká Británie) (podmínky - 25 kV a 50 mA, Rh zdroj, standartní kalibrace, analytik J. B. Kolman) v laboratoři materiálové analýzy v Ústavu fyziky plazmatu AV ČR, v.v.i. Chemické složení sklovin a minerálů bylo orientačně studováno pomocí elektronového mikroanalyzátoru JEOL JXA-50A s energiově disperzním analyzátorem EDAX PV9400 (podmínky - 20 kV, 1.7 . 10⁻⁹ A, průměr svazku elektronů 1 - 2 µm, korigováno, analytik M. Kozumplíková) v Geologickém ústavu AV ČR, v.v.i. Ověření naměřených údajů bylo provedeno na elektronovém mikroanalyzátoru Cameca SX-100 ve vlnově-disperzním režimu (podmínky - urychlovací napětí 15 kV, měřící proud 20 mA, průměr elektronového paprsku 3 až 5 µm, čas měření prvku 10 až 30 s, syntetické a přírodní standardy: LiF (F $K\alpha$), albit (Na $K\alpha$), ortoklas (Si $K\alpha$), TiO₂ (Ti Kα), Al₂O₃ (Al Kα), forsterit (Mg Kα), NaCl (Cl $K\alpha$), ortoklas (K $K\alpha$), wollastonit (Ca $K\alpha$), fayalit (Fe Ka), rodonit (Mn Ka), kovový Ni (Ni Ka), willemit (Zn Ka), SnO₂ (Sn Ka), analytik V. Kollárová) ve Štátnom geologickom ústave Dionýza Štúra (ŠGÚDŠ) v Bratislavě. U vzorku 201 byla na přístroji ICP-MS společností ECOCHEM provedena analýza zlata (X00 ppm), platinoidů (∑ PGE X ppm) a REE (X00 ppm), analytik J. Bendl.

Charakteristika strusek

Makroskopicky strusky představují členitou sklovitou neprůhlednou hmotu s četnými bublinami a hojnými nerovnostmi. Tři strusky mají šedočernou barvu (vz. 199, 200, 201), jeden vzorek strusky je světle šedý s viditelnými smouhami (vz. 198). Ve všech případech jde o typický odpad po tavení.

Mikroskopická charakteristika a chemické složení

Mikroskopicky je ve všech vzorcích strusek pozorovatelná základní sklovitá hmota, ve které jsou v různém poměru a velikostech zastoupeny především lištovité krystaly ilmenitu, drobná zrna ryzího cínu a další minerály. Chemické složení strusek je variabilní, přičemž záleží především na poměru množství vyrostlic a silikátové taveniny (tab. 1 - 4).

Světle šedá smouhovitá silikátová Sn -struska (vz. 198) s fragmentem původní horniny obsahuje jako jediná ze studovaných vzorků drobně rozpadlé zrno SnO₂ (patrně relikt kasiteritu) (obr. 3). V základní sklovité silikátové tavenině jsou dále přítomny lamely ilmenitu (průměrné délky 25 - 130 µm), drobná zrna cínu (velikosti max. do 7 µm), zrna

200 μm

Obr. 3 Rozpadlý agregát zrnitého kasiteritu (šedobílý, trojúhelníkový tvar - vlevo) ve sklovité silikátové tavenině (tmavě šedá) s lamelami ilmenitu (šedé) a bílými zrny cínu. Sn-struska - vzorek č. 198. BSE foto M. Kozumplíková.

Obr. 4 Bílá zrna cínu vyplňují dutiny ve sklovité základní hmotě s kostrovitými lamelami ilmenitu. Sn-struska - vzorek č. 199. BSE foto M. Kozumplíková.

Tabulka 1 Chemické složení Sn-strusek metodou RFA (práškové preparáty) (v hm. %, přepočítáno na 100 %)

(V 111	n. 76, prepocitano	na 100 76)		
vzorek	198	199	200	201
WO ₃	0.47	0.53	0.80	0.54
Ta ₂ Ŏ ₅	0.15	0.20	0.25	0.24
Nb ₂ O ₅	0.08	0.19	0.16	0.20
SiŌ, °	45.21	30.54	20.41	18.40
ZrO ₂	0.16	0.33	0.39	0.33
SnŌ,	13.99	18.04	30.10	32.71
TiO,	9.53	17.63	19.44	19.75
Al ₂ Õ ₃	12.71	8.26	6.38	5.63
FeO	8.26	15.08	15.98	16.35
MnO	0.56	0.88	0.97	0.98
MgO	0.72	1.28	0.62	0.66
CaO	1.84	3.77	2.62	2.35
Na ₂ O	1.89	0.66	0.32	0.30
K₂Ō	4.43	2.61	1.56	1.56
Total	100.00	100.00	100.00	100.00

Obr. 5 Bílá zrna cínu ve sklovité tavenině s kostrovitými lamelami ilmenitu. Sn-struska - vzorek č. 199. Odražené světlo, foto B. Šreinová.

Obr. 6 Zrno Cr-spinelu s patrným reakčním lemem ve sklovité tavenině s lištami ilmenitu. Sn-struska - vzorek č. 200. Odražené světlo, foto B. Šreinová.

křemene a topazu. Celkové chemické složení Sn-strusky je patrné z tabulky 1, orientační chemické složení v různých místech strusky je uvedeno v tabulce 2. Je patrné, že uvedená silikátová Sn-struska má oproti ostatním vzorkům zvýšené množství SiO₂ (45.21 hm. %), což je dáno zejména přítomností zrn křemene, který v ostatních vzorcích nebyl identifikován, a nejnižší zastoupení SnO₂ (13.99 hm. %). Z výše uvedeného je patrné, že struska prošla níže teplotním procesem než ostatní šedočerné strusky.

Šedočerné strusky (vz. č. 199, 200, 201) se vyznačují oproti předchozímu vzorku zejména nižším podílem SiO₂ (tab. 1) a nepřítomností zrn, případně reliktů zrn SnO₂. Zůstala zde pouze výše teplotně odolná zrna minerálů chromitu, chromspinelu a korundu.

Sn-struska (vz. 199) se v mikroskopickém měřítku svým vzhledem blíží základní sklovité silikátové tavenině předchozího vzorku č. 198. Ve strusce je významně zastoupena především silikátová tavenina s výraznými kostrovitými lamelami ilmenitu (průměrné délky 15 - 150 μ m) a zrny cínu (velikosti max. do 16 μ m, ojediněle až 50 μ m) (obr. 4 a 5). Chemickým složením zaujímá struska (vz. 199) místo mezi silikátovou Sn-struskou (vz. 198) a Sn-struskami (vz. 200 a 201). Oproti vzorku 198 má snížený podíl SiO₂ a zvýšený podíl SnO₂, avšak oproti vzorkům 200 a 201 je tento poměr opačný (tab. 1).

Sn-struska (vz. 200) se při porovnání s ostatními vzorky mikroskopicky vyznačuje největší velikostní variabilitou minerálů ve sklovité základní tavenině (obr. 6 a 7). Obrázek 6 představuje na obvodu korodované zrno Cr-spinelu (velikosti 170 µm) ve velmi jemnozrnné sklovité tavenině s lištami ilmenitu (průměrné délky 5 - 20 µm). V jiné části stejné strusky (obr. 7) jsou zachyceny silné lamely ilmenitu (délky až 400 µm a šířky 40 µm) a kostrovité agregáty ilmenitu (s jednotlivými lamelami průměrné velikosti přibližně 20 x 5 µm) ve velmi jemnozrnné sklovité základní hmotě s drobnými lištami ilmenitu (průměrné délky 5 - 20 µm). Svým celkovým chemickým složením pak Sn-struska (vz. 200) odpovídá Sn-strusce (vz. 201) (tab. 1).

Obr. 7 Různě silné lamely a kostrovité agregáty ilmenitu ve sklovité základní hmotě. Sn-struska - vzorek č. 200. Odražené světlo, foto B. Šreinová.

Sn-struska (vz. 201) je nejvíce mikroskopicky podobná Sn-strusce (vz. 199). Na obrázku 8 je sklovitá tavenina s lištami ilmenitu a drobnými bílými zrny cínu doplněná vyznačenými body, ve kterých byla provedena v laboratoři Geologického ústavu AV ČR v.v.i. chemická analýza (tab. 3). Obrázek 9 představuje velmi jemnozrnnou až jemnozrnnou základní taveninu s ilmenitovými kostrovitými agregáty a krystality uzavírající oválné zrno korundu (velikosti 500 x 220 µm), na obrázku 10 jsou ve sklovité základní tavenině přítomná srostlá zrna Cr-spinelu (velikosti 250 x 160 µm) a oválné zrno ilmenitu (velikosti 125 µm). Chemický rozbor metodou RFA prokázal ve strusce nejnižší zastoupení SiO₂ (18.40 hm. %) oproti nejvyššímu zastoupení SnO₂ (32.71 hm. %). U vzorku 201 byla

221

Tabulka 2 Chemické složení Sn-skloviny silikátové strusky (vz. 198) stanovené analyzátorem EDAX (v hm. %, přepočítáno na 100 %)

označení	b/9	d/2	d/3	b/4	b/3	b/7	b/6	b/8
P ₂ O ₅	0.42	0.48	0.48	0.61	0.67	0.48	0.43	0.42
SnO,	4.91	1.82	6.33	16.47	17.40	33.55	14.42	13.57
SiO	66.68	63.33	56.60	50.61	48.97	38.07	20.49	15.42
TiO,	5.83	0.00	3.06	2.18	2.90	3.38	35.26	30.40
Al ₂ Õ ₃	10.21	20.99	18.00	15.20	15.21	12.12	6.30	5.77
FeÔ	5.70	1.43	4.97	4.84	4.76	3.99	17.63	28.34
MnO	0.56	0.15	0.34	0.33	0.53	0.39	0.92	1.41
MgO	0.46	0.71	0.80	0.82	0.96	0.84	0.78	1.61
CaO	0.90	0.67	1.59	2.34	2.02	1.90	1.00	0.57
Na ₂ O	1.58	3.70	2.80	2.60	2.81	2.39	0.78	1.53
K₂Ō	2.75	6.72	5.03	4.00	3.77	2.89	1.99	0.96
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00

Tabulka 3 Chemické složení Sn-strusky (vz. 201) stanovené analyzátorem EDAX (v hm. %, přepočítáno na 100 %) analyzované body - obrázek 8

Tabulka 5 Chemické složení ilmenitu (vz. 201)) stanove-
né elektronovým mikroanalvzátorem (v hr	1. %)

100 %), analyzované body - obrázek 8					
analýza	1	3	2	4	5
P,0,	0.55	0.58	0.23	0.69	0.35
SnO,	47.76	46.84	1.39	1.04	2.96
SiO ₂	26.72	25.95	0.85	0.39	0.40
TiO,	4.79	5.98	50.34	50.59	50.68
Al ₂ Õ ₃	8.47	8.60	0.86	0.96	1.62
FeÔ	5.15	6.08	41.51	41.91	40.15
MnO	0.68	0.87	2.23	2.26	1.11
MgO	0.70	0.41	2.18	1.90	1.34
CaO	2.62	2.70	0.18	0.11	0.23
Na ₂ O	0.43	0.17	0.11	0.00	0.58
K ₂ O	2.13	1.82	0.12	0.15	0.58
Total	100.00	100.00	100.00	100.00	100.00

Tabulka 4 Chemické složení Sn-skloviny a korundu (vz. 201) stanovené elektronovým mikroanalyzátorem (v hm. %)

	Sn sklo	Sn sklo	Sn sklo	korund	
analýza	1	2	3	7	
SiO ₂	26.15	25.30	26.39	0.00	
TiO,	4.39	4.90	4.22	0.77	
Cr ₂ Õ ₃	0.00	0.02	0.02	0.05	
Al ₂ O ₃	8.18	8.06	8.44	97.40	
FeO	4.29	4.28	3.85	0.39	
MnO	0.24	0.27	0.23	0.04	
NiO	0.00	0.03	0.00	0.03	
MgO	0.26	0.23	0.23	0.00	
CaO	3.15	3.03	3.16	0.00	
Na ₂ O	0.80	0.74	0.74	0.01	
K,Ō	1.71	1.63	1.72	0.00	
SnO,	52.44	52.44	52.14	0.00	
ZnO	0.01	0.03	0.00	0.04	
CI	0.00	0.00	0.00	0.01	
Total	101.61	100.95	101.13	98.73	

analýza	4	5	6
SiO	0.02	0.03	0.19
TiO ₂	50.63	51.06	50.29
Cr_2O_3	0.12	0.13	0.09
Al ₂ O ₃	0.35	0.33	0.39
FeO	40.54	40.72	39.95
MnO	2.01	2.04	2.03
NiO	0.00	0.01	0.00
MgO	1.88	1.89	1.87
CaO	0.11	0.11	0.12
Na₂O	0.00	0.01	0.01
K₂O	0.02	0.01	0.03
SnO ₂	0.82	0.67	1.15
ZnO	0.03	0.00	0.04
CI	0.00	0.00	0.00
Total	96.52	97.02	96.16
Si	0.001	0.001	0.005
Ti	0.987	0.989	0.987
Cr	0.002	0.003	0.002
Al	0.011	0.01	0.012
Fe ²⁺	0.879	0.877	0.872
Mn	0.044	0.044	0.045
Ni	0.000	0.000	0.000
Mg	0.073	0.073	0.073
Ca	0.003	0.003	0.003
Na	0.000	0.001	0.001
K	0.001	0.000	0.001
Total	2	2	2

Obr. 8 Sn-struska (vzorek č. 201) s vyznačenými analyzovanými body (tab. 3). BSE foto M. Kozumplíková.

provedena jak orientační chemická analýza (tab. 3), tak detailní chemická analýza nejen základní sklovité taveniny, ale i jednotlivých minerálů (tab. 4 - 6). V tabulce 3 je uvedené orientační chemické složení základní sklovité hmoty (anal. 1 a 3) a ilmenitu (anal. 2, 4 a 5), v tabulce 4 detailní chemické složení sklovité hmoty (anal. 1, 2 a 3) a korundu (anal. 4). Detailní chemické složení ilmenitu s přepočtem na 2 kationty je v tabulce 5 (anal. 5, 6 a 7), chemické složení Cr-spinelu a chromitu s přepočtem na 3 kationty je v tabulce 6.

V laboratoři společnosti ECOCHEM bylo u vzorku 201 provedeno stanovení obsahu chemických prvků, REE, zlata a PGE. Ve strusce vystupuje originální příměs jednotlivých prvků se zvýšeným obsahem nad 1000 ppm, přičemž charakteristickým doprovodným prvkem je wolfram, niob a tantal. Vzácné zeminy jsou vázané na silikátovou taveninu, kde vystupují zcela homogenně v celé ploše zkoumané skloviny. Významným poznatkem je rovněž zjištění zvýšeného obsahu zlata a PGE ve strusce. Vzhledem k probíhajícímu výzkumu však budou výše zmíněné údaje (založené na analytice v laboratoři společnosti ECOCHEM) zpřesněny a podrobněji diskutovány v další připravované práci.

Diskuze a závěr

Výzkum prokázal, že studované strusky patří k unikátním pozůstatkům po hutnění vyrýžovaných cínových rud. Fragment strusky s natavenou žulou je dokladem toho, že část rudy byla ještě srostlá s primárními horninami - s greiseny. Studované strusky byly evidentně používány jako tavidlo do primárních rud, přičemž pohlcovaly část nečistot. Strusky jsou svým obsahem heterogenní a obsahují jak pravé šlichové komponenty a rudy, které se dají stavit, tak komponenty, které zůstávají se struskou neslučitelné.

Dále byl výzkumem nepochybně doložen a prokázán jako zdrojový materiál potoční

Obr. 9 Oválné z vité tavenině vých kostrov velikostech. Kollárová.

Obr. 9 Oválné zrno korundu (černé) ve sklovité tavenině s hojným podílem ilmenitových kostrovitých agregátů o rozdílných velikostech. Vzorek č. 201. BSE foto V. Kollárová.

Obr. 10 Strostlá zrna Cr-spinelu (černá) obklopená sklovitou taveninou s ilmenitovými krystality a oválným ilmenitovým zrnem (tmavě šedé - vpravo). Vzorek č. 201. BSE foto V. Kollárová.

	,				
	Cr-spinel	Cr-spinel	chromit	chromit	
	8	9	10	11	
SiO ₂	0.08	0.09	0.00	0.00	
TiO ₂	0.54	0.57	0.10	0.16	
Al ₂ Õ ₃	32.82	32.48	4.21	4.20	
Cr ₂ O ₃	33.28	33.23	59.33	59.27	
Fe,O,	4.37	4.34	5.91	5.56	
FeŌ	11.33	11.16	22.74	22.52	
MnO	0.22	0.23	0.62	0.62	
MgO	16.93	16.93	5.85	5.94	
CaO	0.01	0.01	0.01	0.02	
NiO	0.25	0.21	0.05	0.00	
Total	99.83	99.25	98.82	98.29	
Si	0.002	0.003	0.000	0.000	
Ti	0.012	0.012	0.003	0.004	
AI	1.117	1.112	0.176	0.176	
Cr	0.760	0.763	1.661	1.667	
Fe ³⁺	0.095	0.095	0.158	0.149	
Σ	1.986	1.985	1.998	1.996	
Fe ²⁺	0.274	0.271	0.673	0.670	
Mn	0.005	0.006	0.019	0.019	
Mg	0.729	0.733	0.309	0.315	
Ca	0.000	0.000	0.000	0.001	
Ni	0.006	0.005	0.001	0.000	
Σ	1.014	1.015	1.002	1.004	
Kationty	3	3	3	3	
0	4	4	4	4	
Fe ²⁺ /Fe ³⁺ jsou přepočtené podle stechiometrie					

Tabulka 6 Chemické složení Cr-spinelu a chromitu (vz. 201) stanovené elektronovým mikroanalyzátorem (v hm. %)

sediment s jednotlivými terasovými stupni a svahovými zvětralinami. Tento fakt dokládá především specifické chemické složení, které je odlišné od dosud zkoumaných struskových materiálů. Cín je rozptýlen především v silikátovém skle, v menší míře je spjat s jednotlivými sférulemi ryzího cínu. Významným fenoménem studované strusky je i výskyt kostrovitých agregátů fáze odpovídající svým chemickým složením ilmenitu (tab. 3 a 5), který byl ověřen i rentgenograficky. Dále bylo zjištěno, že charakteristickým doprovodným prvkem v cínonosné strusce je wolfram, který zřejmě pochází ze znečistění narýžovaných materiálů zejména wolframitem, případně scheelitem. Obsah niobu a tantalu dokazuje zejména izomorfní přítomnost obou prvků v rýžovaném kasiteritu a dalších těžkých minerálech. Na silikátovou taveninu jsou také vázány vzácné zeminy, které však vystupují zcela homogenně v celé ploše zkoumané skloviny. Zmíněné prvky zřejmě pocházejí z akcesorických minerálů uvolněných ze žul a greisenů v této části Slavkovského lesa. Charakter obsahu zastoupení jednotlivých platinových kovů vede k závěru, že největší část PGE může být i kontaminací, zatímco pro zlato můžeme předpokládat zdroj v alterovaných zónách mariánsko-lázeňského metabazitového masivu, kde se může vyskytovat v kontaktních zónách s tělesem žul. Obdobný výskyt zlata v polských serpentinitech prokázali Michalik (2001) a Speczik, Piestrzyński (1995). Studovaná struska je reálným potvrzením získávání nebo výskytu zlata v oblastech, kde docházelo také k rýžování cínových rud a vede k domněnce, že cínové rudy byly objeveny až při prospekci na zlato. Toto nám též potvrzují často velmi nedůvěryhodné archivní, respektive kronikářské informace o rýžování zlata v oblasti Horního Slavkova a v jeho širším okolí.

Studované Sn-strusky s ilmenitem se výrazně liší od novodobých Sn-strusek, jak charakterem, tak minerálním složením. Zatímco Butler (1978) identifikoval v novodobé Sn-strusce granát, pyroxen a melilit, ve studovaných struskách tyto minerály stanoveny nebyly. Teplota při jejich vzniku tedy nepřesáhla 1200 °C. Závěrem lze s jistou mírou pravděpodobnosti konstatovat, že akumulace strusek z oblasti vodní nádrže Mariánské Lázně by měla být starší než je rok 1500. Obecně od tohoto roku existovala pro taviče při hospodaření nejen s cínonosnou rudou, ale i se všemi produkty po hutnění včetně cínonosných strusek, povinnost jejich váhu pečlivě zaznamenat - veškerý cínonosný materiál se musel dále zpracovat, tudíž by neměl volně ležet tak, jak tomu odpovídá nálezová situace. Stáří strusek lze, rovněž s jistou mírou pravděpodobnosti, časově korelovat s nálezy licích pánviček s kapkami cínu s keramikou pražského typu z Roztok u Prahy a z okolí Kadaně (Šrein et al. 1988) nebo z Moravy (Jelínková et al. 2012).

Poděkování

Předložená práce vznikla v rámci česko-německého projektu ArchaeoMontan - středověké hornictví v Sasku a Čechách, který je financován z prostředků Evropského fondu pro regionální rozvoj, Program Cíl 3 na podporu přeshraniční spolupráce 2015 - 2018 mezi Českou republikou a Svobodným státem Sasko a projektu Ministerstva kultury ČR v rámci institucionálního financování dlouhodobého koncepčního rozvoje výzkumné organizace Národní muzeum (DKRVO 2016/03, 00023272).

Literatura

- Becke F. (1917) Vorlage von Gesteinen und Mineralen aus der Umgebung von Marienbad. Mitteilungen der Wiener Mineralogischen Gesellschaft: Monatsversammlung am 6. November 1916 (Nr. 79) In: Tschermaks Mineralogische und Petrographische Mitteilungen (Wien) 3. und 4. Heft, 40-44.
- Butller B.C.M. (1978) Tin-rich garnet, pyroxene, and spinel from a slag. *Mineral. Mag. 42, 487-492.*
- Jelínková D., Šrein V., Šťastný M. (2012) Doklady slévačství neželezných kovů v kultuře s keramikou pražského typu na Moravě. *In: Doležel J., Wihoda M. Mezi raným a vrcholným středověkem. Vyd. Archeolog. Úst.* AV ČR, Brno, 69-89.
- Kratochvíl J. (1961) Topografická mineralogie Čech IV (L-N). Nakladatelství ČSAV, Praha.
- Michalik M. (2001) Gold in serpentinite weathered residua in Lower Silesia. *Mineral. Soc. Poland - Spec. Papers 18, 129-131.*
- Speczik S., Piestrzyński A. (1995) Au-mineralization from the Ślęźa ophiolite complex, SW Poland. In: Pašava J., Kříbek B., Žák K. (eds.): Mineral Deposits: from their Origin to their Environmental Impacts. Proceedings of the 3rd Biennial SGA Meeting, Czech Rep., 191-193.
- Šrein V., Šťastný M., Šreinová B., Profantová N., Ondráčková L. (1998) Ověření funkce tak zvaných licích pánviček z Roztok u Prahy a z okolí Kadaně. Bull. mineral.-petrolog. Odd. Nár. Muz. (Praha) 6, 252.