https://doi.org/10.46861/bmp.30.095

PŮVODNÍ PRÁCE/ORIGINAL PAPER

Kausticky metamorfovaný pískovcový xenolit a doprovodná hydrotermální mineralizace z neovulkanitů od Prackovic nad Labem (České středohoří)

Pyrometamorphosed sandstone xenolith and associated hydrothermal mineralization from neovolcanites at Prackovice nad Labem (České středohoří Mts., Czech Republic)

Zdeněk Dolníček^{1)*}, Petr Stöhr²⁾, Jana Ulmanová¹⁾ a Luboš Vrtiška¹⁾

¹⁾Mineralogicko-petrologické oddělení, Národní muzeum, Cirkusová 1740, 193 00 Praha 9; *e-mail: zdenek.dolnicek@nm.cz
²⁾SG Geotechnika, Geologická 4, 152 00 Praha 5 - Barrandov

DOLNIČEK Z, STÖHR P, ULMANOVÁ J, VRTIŠKA L (2022) Kausticky metamorfovaný pískovcový xenolit a doprovodná hydrotermální mineralizace z neovulkanitů od Prackovic nad Labem (České středohoří). Bull Mineral Petrolog 22(1): 95-107 ISSN 2570-7337

Abstract

Technical workings realized near Prackovice nad Labem (České středohoří Mts., Czech Republic) yielded new findings about rocks and mineral veins present in Cenozoic volcanites. The studied xenolith represents a piece of pyrometamorphosed and hydrothermally altered sandstone enclosed in an alkaline basic volcanic rock. The core of the xenolith contains relicts of clasts of quartz, embedded in a matrix composed of laths of quartz (probably pseudomorphs of quartz after tridymite) and symplectitic intergrowths of alkali feldspar (sanidine Or_{57.81}Ab_{19.41}An_{0.1}) and quartz. This core is rimmed by drusy overgrowths of sanidine and crystals of fluorapatite, aegirine-augite and titanite. All silicates are characterized by a significant substitution of Al by Fe³⁺, which is probably the result of high content of Fe³⁺ in the sandstone protolith (perhaps in *limonite* cement). The marginal part of xenolith is formed by zeolites (chabazite-K and phillipsite-K), saponite and calcite. These minerals likely crystallized at very low temperatures (<100 °C) in a vug, leaving after volatiles, which were expelled during pyrometamorphism of the xenolith. In addition, we have studied tiny hydrothermal veinlets hosted by neovolcanites, composed of a mixture of Al-rich phyllosilicates (probably a mineral from the kaolinite group and smectite) and strongly substituted carbonates including siderite (Sid_{55.91}Mag_{3.38}Cal_{5.31}Rdc₁) and calcite (Cal_{56.90} Mag_{8.41}Sid_{1.6}).

Key words: neovolcanics, xenolith, pyrometamorphism, zeolites, aegirine-augite, smectite, siderite, České středohoří Mts.

Obdrženo 11. 5. 2022; přijato 27. 6. 2022