ISSN

print 2570-7337
online 2570-7345

Měděná mineralizace z Horní Halže u Měděnce v Krušných horách (Česká republika)

Copper mineralization from Horní Halže near Měděnec in the Krušné hory Mts. (Czech Republic)


DOI: https://doi.org/10.46861/bmp.29.351

Klíčová slova

Abstrakt

An interesting copper mineralization has been discovered in fragments of hydrothermal quartz gangue found              in dump material of the abandoned unnamed gallery 1.5 km S from Horní Halže (now part of the Měděnec village), the Krušné hory Mts., Czech Republic. The primary mineralization represented by fine-grained quartz, hematite, pyrite and probably also djurleite was intensively affected by supergene processes. Djurleite and pyrite are partly replaced by Cu sulphides - roxbyite, anilite, spionkopite and covellite. The origin of association bornite/half-bornite/anilite found in some samples can be analogous, although in this case it cannot be ruled out that it may be the result of decomposition of the original solid solution (against the ideal bornite clearly enriched in Cu) formed in the hydrothermal stage. The formation of other Cu minerals (malachite, brochantite, libethenite and pseudomalachite) and goethite is already clearly bound to supergene conditions, part of malachite and brochantite was then formed by (sub)recent weathering of Cu-sulphides in the mine dump material. The detailed descriptions, X-ray powder diffraction data, refined unit-cell parameters and quantitative chemical composition of individual studied mineral phases are presented.

Soubory

Abstrakt (PDF) - 189.72KB
Fulltext (PDF) - 7.33MB

Reference

Alvarez M, Sileo EE, Rueda E H (2008) Structure and reactivity of synthetic Co-substituted goethites. Am Mineral 93(4): 584-590. https://doi.org/10.2138/am.2008.2608

Anthony JW, Bideaux RA, Bladh KW, Nichols MC (1990) Handbook of Mineralogy. Volume I Elements, Sulfides, Sulfosalts. 588 s., Mineral Data Publishing Tuscon

Behrens M, Girgsdies F (2010) Structural effects of Cu/Zn substitution in the malachite-rosasite system. Z Anorg Allg Chem 636: 919-927. https://doi.org/10.1002/zaac.201000028

Berry LG (1950) On pseudomalachite and cornetite. Am Mineral 35: 365-385

Berry LG (1954) Crystal structure of Covellite, CuS, and Klockmannite, CuSe. Am Mineral 39: 504-509

Bílek J, Jangl L, Urban J (1976) Dějiny hornictví na Chomutovsku. Vlastivědné muzeum v Chomutově

Burnham ChW (1962) Lattice constant refinement. Carnegie Inst Washington Year Book 61: 132-135

Cordsen A (1978) A crystal-structure refinement of libethenite. Can Mineral 16: 153-157

Djurle S (1958) X-ray study of Cu-S system. Acta Chem Scand 12: 1415-1426. https://doi.org/10.3891/acta.chem.scand.12-1415

Evans HT (1979) The crystal structures of low chalcocite and djurleite. Zeit Krist 150(1-4): 299-320.

Evans HT, Konnert JA (1976) Crystal structure refinement of covellite. Am Mineral 61: 996-1000

Gablina IF, Mozgova NN, Borodaev YS, Stepanova TV, Cherkashev GA, Il´in MI (2000) Copper sulfide association in recent oceanic ores of the Logachev hydrothermal field (Mid-Atlantic Ridge, 14 degrees 45´ N). Geol Ore Depos 42: 296-316

Ghose S (1963) The crystal structure of pseudomalachite, Cu5(PO4)2(OH)4. Acta Cryst 16: 124-128. https://doi.org/10.1107/S0365110X63000281

Goble RJ (1980) Copper sulfides from Alberta: yarrowite Cu9S8 and spionkopite Cu39S28. Can Mineral 18: 511-518

Goble RJ (1981) The leaching of copper from anilite and the production of metastable copper sulfide structure. Can Mineral 19: 583-592

Goble RJ, Robinson G (1980) Geerite, Cu1.60S, a new copper sulfide from Dekalb township, New York. Can Mineral 18, 519-523

Grønvold F, Westrum EF (1980) The anilite/low digenite transition. Am Mineral 65: 574-575

Hatert F (2005) Transformation sequences of copper sulfides at Vielsalm, Stavelot Massif, Belgium. Can Mineral 43: 623-635. https://doi.org/10.2113/gscanmin.43.2.623

Helliwell M, Smith JV (1997) Brochantite. Acta Cryst C53: 1369-1371. https://doi.org/10.1107/S0108270197006318

Hutton CO (1959) An occurrence of pseudomalachite at Safford, Arizona. Am Mineral 44: 1298-1301

Hyršl J, Korbel P (2008) Tschechien & Slowakei Mineralien und Fundstellen. Rainer Bode, Haltern

Koto K, Morimoto N (1970) The crystal structure of anilite. Acta Cryst B 26(7): 915-924. https://doi.org/10.1107/S0567740870003370

Kucha H (1979) Anilite, Cu7S4 from Lubin mine, Lower Silesia, Poland. Mineral Polon 10: 89-93

Kucha H, Mayer W, Piestrzyński A, Wieczorek A (1981) The replacement of rutile by chalcocite in the Zechstein copper ores of the Fore-Sudetic Monocline. Mineral Polon 12(1): 69-76

Lafuente B, Doens RT, Yang H, Stone N (2015) The power of databases: the RRUFF project. In: Armbruster T, Danisi RM, eds. Highlights in Mineralogical Crystallography: 1-30, W. De Gruyter, Berlin. https://doi.org/10.1515/9783110417104-003

Litochleb J, Sejkora J, Šrein V, Malec J (2009) Kašperskohorské zlato (Šumava, Česká republika). Bull mineral-petrolog odd Nár Muz (Praha) 17(1): 1-13

Malý KD, Sejkora J (2004) Supergenní Cu a Bi mineralizace na lokalitě Tři Sekery u Mariánských Lázní. Bull mineral-petrolog Odd Nár Muz (Praha) 12: 136-139

Merlino S, Perchiazzi N, Franco D (2003) Brochantite, Cu4SO4(OH)6: OD character, polytypism and crystal structures. Eur J Mineral 15: 267-275. https://doi.org/10.1127/0935-1221/2003/0015-0267

Morimoto N, Kato K (1970) Phase relations of the Cu-S system at low temperatures: stability of anilite. Am Mineral 55: 106-117

Mumme WG, Sparrow GJ, Walker GS (1988) Roxbyite, a new copper sulphide mineral from the Olympic Dam deposit, Roxby Downs, South Australia. Mineral Mag 52: 323-330. https://doi.org/10.1180/minmag.1988.052.366.03

Mumme WG, Gable RW, Petříček V (2012) The crystal structure of roxbyite, Cu58S32. Can Mineral 50(2): 423-430. https://doi.org/10.3749/canmin.50.2.423

Nagai T, Kagi H, Yamanaka T (2003) Variation of hydrogen bonded O… O distances in goethite at high pressure. Am Mineral 88(10): 1423-1427. https://doi.org/10.2138/am-2003-1005

Okrusch M, Lorenz JA, Weyer S (2007) The genesis of sulfide assemblages in the former Wilhemine mine, Spessart, Bavaria, Germany. Can Mineral 45: 723-750. https://doi.org/10.2113/gscanmin.45.4.723

Ondruš P (1993) ZDS - A computer program for analysis of X-ray powder diffraction patterns. Materials Science Forum, 133-136, 297-300, EPDIC-2. Enschede. https://doi.org/10.4028/www.scientific.net/MSF.133-136.297

Pauliš P, Vrtiška L, Sejkora J, Malíková R, Hloušek J, Dvořák Z, Gramblička R, Pour O, Ludvík J (2015) Supergenní mineralizace cínového ložiska Zlatý Kopec v Krušných horách (Česká republika). Bull mineral-petrolog Odd Nár Muz (Praha) 23(2): 182-200

Piestrzyński A, Pieczonka J, Głuszek A (2002) Redbed-type gold mineralisation, Kupferschiefer, south-west Poland. Mineral Deposita 37(5): 512-528. https://doi.org/10.1007/s00126-002-0256-9

Posfai M, Buseck PR (1994) Djurleite, digenite, and chalcocite: intergrowths and transformations. Am Mineral 79(3-4): 308-315

Pouchou J, Pichoir F (1985) „PAP“ (jrz) procedure for improved quantitative microanalysis. In: Armstrong JT (ed): Microbeam Analysis: 104-106. San Francisco Press San Francisco

Sejkora J, Škovíra J (2009) Makroskopický covellin z rudního revíru Krupka v Krušných horách (Česká republika). Bull mineral-petrolog Odd Nár Muz (Praha) 17(2): 31-34

Sejkora J, Šrein V (2012) Supergenní Cu mineralizace z Mědníku na Měděnci, Krušné hory (Česká republika). Bull mineral-petrolog Odd Nár Muz (Praha) 20(2): 255-269

Sejkora J, Škácha P, Kopecký S sen, Kopecký S jun, Pauliš P, Malíková R, Velebil D (2016) Se a Cu mineralizace z Bílé Vody u Javorníka (Česká republika). Bull mineral-petrolog Odd Nár Muz (Praha) 24(2): 161-177

Sejkora J, Pauliš P, Gramblička R, Malíková R, Pour O, Dolníček Z, Ulmanová J, Vrtiška L (2019) Nově zjištěná Bi-Co-Ni-As-U-V mineralizace přísečnického rudního revíru v Krušných horách (Česká republika). Bull Mineral Petrolog 27(1): 1-37

Sejkora J, Pauliš P, Urban M, Dolníček Z, Ulmanová J, Pour O (2021) Mineralogie křemenných žil ložiska cínových rud Hřebečná u Abertam v Krušných horách. Bull Mineral Petrolog 29(1): 131-163. https://doi.org/10.46861/bmp.29.131

Shoemaker GL, Anderson JB, Kostiner E (1977) Refinement of the crystal structure of pseudomalachite. Am Mineral 62: 1042-1048

Sillitoe RH, Clark AH (1969) Copper and copper-iron sulfides as the initial products of supergene oxidation, Copiapó mining district, northern Chile. Am Mineral 54: 1684-1710

Škácha P, Sejkora J (2013) Výskyt cinnabaritu s mikroskopickým gortdrumitem na ložisku Vrančice u Příbrami (Česká republika). Bull mineral-petrolog odd Nár Muz (Praha) 21(1): 57-61

Šrein V (1995) Perspektivní naleziště ametystů Krušných hor. Minerál 3(1): 24-28

Števko M, Sejkora J, Ozdín D (2008) Henclová - nová lokalita pseudomalachitu v Slovenskej republike. Bull mineral-petrolog Odd Nár Muz (Praha) 16: 36-39

Števko M, Sejkora J, Súľovec Š (2017) Príspevok k chemickému zloženiu libethenitu z typovej lokality: ložisko Podlipa, Ľubietová (Slovenská republika). Bull Mineral Petrolog 25(2): 252-259

Števko M, Sejkora J, Malíková R (2018) Nové údaje o supergénnych mineráloch z ložiska Banská Štiavnica (Slovenská republika). Bull Mineral Petrolog 26(1): 90-101

Števko M, Sejkora J, Dolníček Z (2020) Pseudomalachit z lokality Zadné Breziny pri Gemerskej Polome (Slovenská republika). Bull Mineral Petrolog 28(2): 290-294. https://doi.org/10.46861/bmp.28.290

Toman J, Hrazdil V, Sejkora J (2016) Pseudomalachit a descloizit v supergenní minerální asociaci z lokality Krucemburk (Česká republika). Acta Mus Moraviae, Sci geol 101(1-2): 33-43

Urban M, Crkal J (2021) Po stopách historie obce Měděnec a okolí. Obec Měděnec. 256 s

Vrtiška L, Pauliš P, Gramblička R, Sejkora J, Malíková R, Pour O (2017) Supergenní mineralizace rudního revíru Michalovy Hory (Česká republika). Bull Mineral-Petrolog Odd Nár Muz (Praha) 25(2): 228-244

Yang H, Lu R, Downs RT, Costin G (2006) Goethite, α-FeO(OH), from single-crystal data. Acta Cryst E62(12): i250-i252. https://doi.org/10.1107/S1600536806047258

Yvon K, Jeitschko W, Parthé E (1977) Lazy Pulverix, a computer program for calculation X-ray and neutron diffraction powder patterns. J Appl Cryst 10: 73-74. https://doi.org/10.1107/S0021889877012898

Zema M, Tarantino SC, Callegari AM (2010) Thermal behaviour of libethenite from room temperature up to dehydration. Mineral Mag 74: 553-565. https://doi.org/10.1180/minmag.2010.074.3.553

Zigan F, Joswig W, Schuster HD, Mason SA (1977) Verfeinerung der Struktur von Malachit, Cu2(OH)2CO3, durch Neutronenbeugung. Zeit Krist 145(1-6): 412-426. https://doi.org/10.1524/zkri.1977.145.5-6.412