ISSN

print 2570-7337
online 2570-7345

Mineralogická charakteristika polymetalického rudního výskytu Hostětice u Telče (moldanubikum, Česká republika)

Mineralogy of polymetallic ore occurrence Hostětice near Telč (Moldanubian unit, Czech Republic)


DOI: https://doi.org/10.46861/bmp.33.020

Klíčová slova

Abstrakt

Samples from a small vein Pb-Zn-(Ag) ore occurrence near Hostětice (1.5 km east from the town of Telč, Českomoravská vrchovina Upland, Czech Republic) were studied mineralogically by means of electron microprobe and sulfur stable isotope analyses. Major sulfide minerals are represented by black sphalerite (with 0.044 - 0.192 apfu Fe, 0.005 - 0.006 apfu Cd, and 0.001 - 0.008 apfu Mn), galena (with low both Sb and Ag up to 0.003 apfu) and arsenopyrite (rarely with up to 0.010 apfu Co), which are accompanied by rare pyrite (rarely with up to 0.004 apfu Ni or As), chalcopyrite, and native bismuth. Ore minerals are hosted by quartz gangue with subordinate illite-muscovite, siderite (Sid52-79Mag19-43 Rdc1-3Cal0-2Smi0-2), anatase, and a kaolinite-group mineral. Supergene minerals are represented mainly by scorodite and anglesite and, rarely, by probable zýkaite. The δ34S values of galena and sphalerite range between 2.2 and 5.7 ‰ CDT. Arsenopyrite thermometry, illite compositional thermometry, sulfur isotope thermometry, and stabilities of anatase, muscovite, and a kaolinite-group mineral suggest formation temperatures of primary mineralization between 480 and <200 °C and at least episodically acidic pH of the parent fluids. The mineral assemblage and compositions of minerals from Hostětice resemble the so-called k-pol type of base-metal veins widely occurring in the wider area, however, the formation temperatures seem to be somewhat lower at Hostětice in comparison with typical k-pol mineralization.

Soubory

Abstrakt (PDF) - 170.67KB
Fulltext (PDF) - 2.87MB

Reference

Battaglia S (2004) Variations in the chemical composition of illite from five geothermal fields: A possible geothermometer. Clay Miner 39: 501-510. https://doi.org/10.1180/0009855043940150

Bernard JH (1991) Empirical types of ore mineralization in the Bohemian Massif. Ústřední ústav geologický. Praha. 181 pp.

Bernard JH, Žák K (1992) Stable isotope study of Variscan vein Pb-Zn-Ag mineralization of the Bohemian Massif. Explor Mining Geol 1(1): 81-84

Cassaignon S, Koelsch M, Jolivet JP (2007) Selective synthesis of brookite, anatase and rutile nanoparticles: Thermolysis of TiCl4 in aqueous nitric acid. J Mater Sci 42: 6689-6695. https://doi.org/10.1007/s10853-007-1496-y

Culka A, Kindlová H, Drahota P, Jehlička J (2016) Raman spectroscopic identification of arsenate minerals in situ at outcrops with handheld (532 nm, 785 nm) instruments. Spectrochim Acta Part A: Mol Biomol Spectrosc 154: 193-199. https://doi.org/10.1016/j.saa.2015.10.025

Deer WA, Howie RA, Zussman J (2001) Rock-Forming Minerals: Feldspars; Volume 4A, Geological Society of London, London. https://doi.org/10.1180/002646101753238606

Dolníček Z, Ulmanová J, Malý K, Havlíček J, Krejčí Kotlánová M, Koutňák R (2023) Mineralogická charakteristika žilné křemenné mineralizace s molybdenitem z lomu Pohled, havlíčkobrodský rudní revír, Česká republika. Acta Mus Moraviae, Sci geol 108: 145-170

Dolníček Z, Ulmanová J, Vrtiška L, Malý K, Krejčí Kotlánová M, Koutňák R (2024) Mineralogy and origin of vein wolframite mineralization from the Pohled quarry, Havlíčkův Brod Ore District, Czech Republic: Interaction of magmatic and basinal fluids. Minerals 14: 610. https://doi.org/10.3390/min14060610

Frost RL, Palmer SJ, Xi Y (2011) Vibrational spectroscopy of the multi-anion mineral zykaite Fe4(AsO4)(SO4)(OH)·15H2O-implications for arsenate removal. Spectrochim Acta A: Mol Biomol Spectrosc 83(1): 444-448. https://doi.org/10.1016/j.saa.2011.08.062

Fulignati P (2020) Clay minerals in hydrothermal systems. Minerals 10: 919. https://doi.org/10.3390/min10100919

Houzar S, Hrazdil V, Hršelová P, Toman J, Buřivalová L, Grossmannová D., Hladišová T, Litochleb J, Malý K, Škrdla P, Šmerda J, Vedra P, Víšková E, Vokáč M (2021) Historické dolování drahých kovů na Českomoravské vrchovině. Moravské zemské muzeum Brno, 476 pp.

Hrazdil V, Houzar S, Víšková E (2018) Hydrotermální stříbronosná Pb-Zn mineralizace v moldanubickém plutonu v okolí Dačic a Slavonic. Acta Mus Moraviae, Sci geol 103, 2: 17-37

Klemm D (1965) Synthesen und Analysen in den Dreiecksdiagrammen FeAsS-CoAsS-NiAsS und FeS2 -CoS2-NiS2.  Neu Jahrb Mineral, Abh 103: 205-255. https://doi.org/10.1127/njma/103/1965/205

Kretschmar U, Scott SD (1976) Phase relations involving arsenopyrite in the system Fe-As-S and their application. Can Mineral 1079: 364-386

Kruťa T (1966) Moravské nerosty a jejich literatura 1940-1965. Jihomoravské muzeum ve Znojmě

Li YB, Liu JM (2006) Calculation of sulfur isotope fractionation in sulfides. Geochim Cosmochim Acta 70: 1789-1795. https://doi.org/10.1016/j.gca.2005.12.015

Malý K, Dolníček Z (2005) Pb-Zn-Ag vein mineralization of the central part of the Českomoravská vrchovina Upland (Czech Republic): S, C and O stable isotope study. Bull Geosci 80: 307-319

Mastíková E (2009) Geologická dokumentace lomu Pohled (moldanubikum). MS, bakalářská práce, Univerzita Palackého Olomouc

Mastíková E (2011) Mineralogie a podmínky vzniku vybraných mineralizací v lomu Pohled (moldanubikum). MS, diplomová práce, Univerzita Palackého Olomouc

Maydagán L, Franchini M, Impiccini A, Lentz D (2016) Phyllosilicates geochemistry and distribution in the Altar porphyry Cu-(Au) deposit, Andes Cordillera of San Juan, Argentina: Applications in exploration, geothermometry, and geometallurgy. J Geochem Explor 167: 83-109. https://doi.org/10.1016/j.gexplo.2016.05.002

Pauliš P, Kopecký S, Dolníček Z, Sejkora J (2023) Sulfidická mineralizace s Au-bohatým stříbrem z Utína v havlíčkobrodském rudním revíru (Česká republika). Bull Mineral Petrolog 31: 25-34. https://doi.org/10.46861/bmp.31.025

Pauliš P, Kopecký S, Dolníček Z, Sejkora J (2024) Hydrotermální sulfidická mineralizace ze Skalky v havlíčkobrodském rudním revíru (Česká republika). Acta Mus Moraviae, Sci geol 109: 3-35

Pauliš P, Kopecký S, Dolníček Z, Sejkora J, Pour O, Ulmanová J, Kopecký S, Jr. (2022) Wolframová a sulfidická hydrotermální mineralizace z Pekelského vrchu u Jihlavy (Česká republika). Bull Mineral Petrolog 30: 73-94. https://doi.org/10.46861/bmp.30.073

Pouchou JL, Pichoir F (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. In: Armstrong JT (Ed.): Microbeam Analysis, San Francisco Press, San Francisco: 104-106

Rieder M, Cavazzini G, D´yakonov YS, Kamenetskii VAF, Gottardi G, Guggenheim S, Koval´ PV, Mueller G, Neiva AMR, Radoslovich EW, Robert JL, Sassi FP, Takeda H, Weiss Z, Wones DR (1998) Nomenclature of micas. Can Mineral 36: 905-912. https://doi.org/10.1180/minmag.1999.063.2.13

Rye RO (1974) A comparison of sphalerite-galena sulfur isotope temperatures with filling temperatures of fluid inclusions. Econ Geol 69: 26-32. https://doi.org/10.2113/gsecongeo.69.1.26

Sejkora J, Gramblička R (2021) Zýkait z dolu Lehnschafter u Mikulova v Krušných horách (Česká republika) - popis a Ramanova spektroskopie. Bull Mineral Petrolog 29(2): 241-248. https://doi.org/10.46861/bmp.29.241

Sharp ZD, Essene EJ, Kelly WC (1985) A re-examination of the arsenopyrite geothermometer: pressure considerations and applications to natural assemblages. Can Mineral 23: 517-534.

Sundblad K, Zachrisson E, Smeds S-A, Berglund S, Ålinder C (1984) Sphalerite geobarometry and arsenopyrite geothermometry applied to metamorphosed sulfide ores in the Swedish Caledonides. Econ Geol 79: 1660-1668. https://doi.org/10.2113/gsecongeo.79.7.1660  

Trdlička Z, Hoffman V (1975) Untersuchungen der chemischen Zusammensetzung der Gangkarbonate von Kutná Hora (ČSSR). Freiberg Forschungshefte 6: 29-81