ISSN

print 2570-7337
online 2570-7345

Minerály řady bavenit-bohseit z pegmatitu Schinderhübel I v Maršíkově (silezikum, Česká republika)

Minerals of the bavenite-bohseite series from the Schinderhübel I pegmatite in Maršíkov (Silesicum, Czech Republic)


DOI: https://doi.org/10.46861/bmp.28.353

Klíčová slova

Abstrakt

Bavenite and bohseite were found in an archive sample from Schinderhübel I granitic pegmatite, situated ca. 50 m NE from the famous chrysoberyl-bearing pegmatite body Schinderhübel III near Maršíkov (Silesicum, Czech Republic). Minerals of the bavenite-bohseite series together with minor quartz, muscovite and albite form chalky white radial aggregates up to 3.5 cm in size within a fissure cutting the pegmatite. The electron microprobe data revealed 29.0 - 65.4 mol. % of bavenite component, 0.03 - 0.12 apfu Na and 0.05 - 0.20 apfu F. Bavenite seems to be older than bohseite in the studied aggregate. The collected data suggest significant increase of Be/Al during growth of the studied aggregate, which could be explained in two ways. First, one can assume that different primary minerals with contrasting Be/Al ratios were dissolved during different stages of alteration (i.e., chrysoberyl in the early stage giving rise to bavenite-rich compositions and beryl during late stage giving rise to bohseite-rich members). Second, chemical fractionation of Be and Al due to complexation by fluoride anions is suggested from negative correlation between Al and F in the studied members of the bavenite-bohseite series. Identical behaviour is observed also in bavenite-bohseite from Piława Górna and Maršíkov D6e pegmatites, suggesting potential importance of fluoride complexation during hydrothermal stage of evolution of granitic pegmatites.

Soubory

Abstrakt (PDF) - 173.15KB
Fulltext (PDF) - 3.18MB

Reference

Černý P, Novák M, Chapman R (1992) Effect of sillimanite-grade metamorphism and shearing on Nb-Ta oxide minerals in granitic pegmatites: Maršíkov, northern Moravia, Czechoslovakia. Can Mineral 30: 699-718

Dolníček Z, Nepejchal M, Sejkora J, Ulmanová J, Chládek Š (2020) Bohseit z beryl-columbitového pegmatitu D6e v Maršíkově (silezikum, Česká republika). Bull Mineral Petrolog 28(1): 219-223. https://doi.org/10.46861/bmp.28.219

Dostál J (1964) Pegmatity z okolí Maršíkova. MS, diplomová práce, UK Praha

Chládek Š, Uher P (2020) Komplexní magmaticko-hydrotermální vývoj columbitu, mikrolitu a fersmitu: příklad z beryl-columbitového pegmatitu D6e u Maršíkova, Česká republika. Bull Mineral Petrol 28(1): 23-34. https://doi.org/10.46861/bmp.28.023

Chládek Š, Uher P, Novák M (2020) Compositional and textural variations of columbite-group minerals from beryl-columbite pegmatites in the Maršíkov district, Bohemian massif, Czech Republic: magmatic versus hydrothermal evolution. Can Mineral 58: v tisku. https://doi.org/10.3749/canmin.1900093

Kruťa T (1966): Moravské nerosty a jejich literatura 1940-1965. Moravské muzeum Brno

Kruťa T, Paděra K, Pouba Z, Sládek R (1967): Die Mineralienparagenese in dem mittleren Teile des Altvatergebirges (Hrubý Jeseník, Hohes Gesenke, ČSSR) I. Čas Mor muz, Vědy přír 52: 5-28

Kruťa T, Paděra K, Pouba Z, Sládek R (1968) Die Mineralienparagenese in dem mittleren Teile des Altvatergebirges (Hrubý Jeseník, Hohes Gesenke, ČSSR), Fortsetzung. Acta Mus Moraviae 53: 5-80

Lussier AJ, Hawthorne FC (2011) Short-range constraints on chemical and structural variations in bavenite. Mineral Mag 75(1): 213-239. https://doi.org/10.1180/minmag.2011.075.1.213

Novák M, Dosbaba M (2006) Breakdown of primary columbite-tantalite related to Alpine-type hydrothermal alteration, and redistribution of its components. Acta Mineral Petrogr, Abstr Ser 5: 85

Pouchou JL, Pichoir F (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. In: Armstrong JT (ed.) Microbeam Analysis: 104-106. San Francisco Press, San Francisco

Rieder M, Cavazzini G, D´yakonov YS, Kamenetskii VAF, Gottardi G, Guggenheim S, Koval´ PV, Mueller G, Neiva AMR, Radoslovich EW, Robert JL, Sassi FP, Takeda H, Weiss Z, Wones DR (1998) Nomenclature of micas. Canad Mineral 36: 905-912. https://doi.org/10.1180/minmag.1999.063.2.13

Szełęg E, Zuzens B, Hawthorne FC, Pieczka A, Szuszkiewicz A, Turniak K, Nejbert K, Ilnicki SS, Friis H, Makovicky E, Weller MT, Lemée-Cailleau M-H (2017) Bohseite, ideally Ca4Be4Si9O24(OH)4, from the Piława Górna quarry, the Góry Sowie Block, SW Poland. Mineral Mag 81: 35-46. https://doi.org/10.1180/minmag.2016.080.066

Zachař A, Novák M, Škoda R (2020) Beryllium minerals as monitors of geochemical evolution from magmatic to hydrothermal stage; examples from NYF pegmatites of the Třebíč Pluton, Czech Republic. J Geosci 65: 139-150. https://doi.org/10.3190/jgeosci.307

Zachař A, Škoda R (2019) Bohseite-bavenite from intragranitic NYF pegmatites of the Třebíč Pluton. In Book of abstracts of the 9th European Conference on the Mineralogy and Spectroscopy, September 11-13, Prague, nestr.